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Systolic-Array NPUs

* Run Neural Network (NN) operations on a systolic array
A two-dimensional array of Processing Elements (PES)
* PEs execute one Multiply-ACcumulate (MAC) operation per cycle.

« Suited for matrix multiplication, a key operation in
NNs

* e.g., convolutional and fully-connected layers
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Underutilized Hardware Resource

* Prior NPUs allocate systolic array to one NN at a time.
* e.g., single-NN execution, temporal multitasking

* Highly difficult to fully utilize NPU with only a single NN
« # of output channels > PE width, Filter size > PE height

* Prior NPU shows the low HW resource utilization
« 22.0% of PEs and 33.4%b of the off-chip DRAM bandwidth

OPEs ®mOff-chip DRAM Bandwidth

We need Spatial Multitasking to improve HW utilization!

Benchmark



Spatial Multitasking on NPUs

» Co-locate multiple NNs on the same systolic array

» Advantages
* Higher HW utilization

* Higher multi-program performance
« System throughput (STP)
» Average normalized turn-around time (ANTT)

NCF

ResNet50

AlexNet —
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Limitations of Prior Work

- Coarse-grained systolic array allocation

« Partition the systolic array into multiple sub-arrays
« e.g., 128x128 systolic array = 4 64x64 sub-arrays

* Allocate the sub-arrays to co-located NNs

- High hardware cost
* e.g., all-to-all high radix crossbar

Need a new flexible, fine-grained systolic-array allocation

for fine-grained spatial multitasking on NPUs
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Lack of Shared NPU Resource Modeling

* The optimal NPU resource allocation is crucial
* Allocate to maximize the performance benefits of spatial multitasking
 Consider DNN's characteristic

« EXisting performance model results in sub-optimal alloc.
o It achieves much lower STP than the optimal allocation

It doesn’t consider the contention on the NPU resource

= QOptimal XPREMA —=Worst

We need new accurate performance model

for spatial multitasking!

Mix 1 Mix 2 Mix 3 Mix 4 Mix 5 Mix 6 Mix 7 Mix 8 Mix 9
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Goal: “"Fine-Grained” Multitasking

 Fine-grained systolic-array allocation granularity
» Systolic array allocation should not be bounded by sub-arrays.

- Low hardware implementation cost
» Easily employ the new architecture to the existing NPUs

« Support a high number of co-located NNs
« Maximize the performance of spatial multitasking

* High accurate performance model
* Find optimal allocation, considering HW resource contention
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Key Idea: Reverse the Dataflows

* Fine-grained systolic array allocation granularity
- Input activation mirroring for PE column distribution
 Partial sum mirroring for PE row distribution

« Low hardware implementation costs
* Only 7.29%b overhead for the 128x128 Google TPU

» Support up to 4 NNs

 Reverse the dataflows of the input activations and partial sums at the
same time
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Weight-Stationary Dataflow

 Each filter weight remains stationary at one PE.

 Stream iacts left-to-right and psums top-to-bottom
» Each PE row processes one input patch.
» Each PE column processes one output channel.
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PE Column Distribution

* Reverse the iact dataflows of co-located NNs
« One NN’'s iacts flow left-to-right and the other’s flow right-to-left.
« Both NNs’ psums flow top-to-bottom.

» Input activation

» Partial sum
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PE Row Distribution

- Reverse the psum dataflows of co-located NNs
« Both NNs’ iacts flow left-to-right.
* One NN’s psums flow upwards and the other’s flow downwards.

1 1 1 1

» Input activation

» Partial sum f f f f
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Dataflow Mirroring

* Up to 4 NNs by enabling both iact and psum mirroring
* Fine-grained allocation of both PE rows and columns

» Input activation

) 2
5

oL e

lact-then-psum mirroring Psum-then-iact mirroring
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DM-NPU: NPU Architecture

 Extend the baseline Google TPU with dataflow mirroring

* Bidirectional bus, additional accumulators, extended SDS
* Only 7.29%b overhead on top of 7-nm 128x128 TPU
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DM-Perf: Performance Model

* PE Contention

» Calculate computation latency using tile’s size

» Off-chip DRAM BW contention

* Consider DRAM access characteristics and
the contention on DRAM BW

* We use the Profiled DRAM utilization
DRAM utilization

* On-chip GB contention

* Define three cases following GB capacity
« Non-prefetch, data reuse, and prefetch

as the layer’s

Algorithm 1 DM-Perf
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: GB: Allocated GB capacity
BWpgan: off-chip DRAM Bandwidth
Util p g apr: Utilization of DRAM of layer
M, K, N: Im2col data size of layer
m, k, n: Tiled im2col data of tile
Claf y: Compute latency of tile
Miatency: Memory thahhth\ of tile
endiget, -:tartmct End, start address of input activation of tile
sze stimated: T0tal execution latency of a DNN
procedure DM-PERE.ESTIMATEEXECTIME
Tf'7necstimtltcd =0
for Tiles in Layers do
GBchtovm“ =GB
Datapayer = M x K + K x N
for each (m,k,n) in Tiles do
Clateney =m+2 X k+n
actsize = endiuct — startiact
ﬂ'[latcncy = (?:aCtsazc +k x ?n)/[BI’i’VDRA}‘J X ["Tf'iEDRAJ"Jj
if GBLeftover < 0 then
Timecstimated + = ((Tlatcncy + i“"lriateﬂcy)
else if (GBLeftover > 0)and (Datarayer < GB) then
Tiﬂlecstirnatcd + = Clarcncy
else
Timeestimated + = rnax(cjiatcncya ﬂf{atcncy:}
GBchtot'cr‘* — (ia{‘tszzc + k% ?'Tl)

end for
return Ti‘ﬂlecstl mated
end procedure

» Differently calculate execution latency following the case
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DM-Scheduler: Scheduler

« Support dynamic re-allocation of the systolic array
* DRAIN the executing layers when an NN arrives or finishes
 Re-allocate the systolic array after the preemption completes

Systolic

array

Output

accumulators
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Simulation Configuration

« SCALE-Sim/DRAMsim3 + Accelergy/CACTI

« SCALE-Sim, CACTI and Accelergy for PEs and on-chip SRAMs
 DRAMsim3 for off-chip DRAM

Parameter Low Performance TPU-Like High Performance
Clock frequency 1 GHz
Systolic Array 64x64 128x128 256x256
Output accumulators 2048 entries / column
On-chip SRAM buffer I MB 32 bgnl\ljlsé 32 B/cycle 16 MB
Off-chip DRAM HBMZ2, 8 channels, 256GB/s
Computation order Filter-major
Memory scheme Working sets of filter and activations
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Spatial Multitasking Workloads

* Nine representative MLPerf DNNs with batch sizes 4
« 2-, and 4-way multitasking workloads

Name PE Util. | DRAM Category
Bandwidth Util.

AlexNet 7.70% 26.94% M
GoogleNet 35.78% 41.15% X
ResNet-50 39.37% 48.41% X
AlphaGoZero | 63.53% 21.57% C
NCF 0.21% 8.19% L
FasterRCNN | 44.71% 47.52% M
SegqCNN 5.06% 47.21% M
SeqLSTM 1.00% 32.30% M
Transformer 0.79% 22.07% M

Workload Benchmarks Scenario
Mix 1 AlphaGoZero, NCF CL
Mix 2 AlphaGoZero, SeqCNN CM
Mix 3 NCF, FasterRCNN LX
Mix 4 NCF, SeqLSTM LM
Mix 5 NCF, Transformer LM
Mix 6 NCF, AlexNet LM
Mix 7 FasterRCNN, ResNet-50 XX
Mix 8 AlphaGoZero, ResNet-50, NCF, Transformer CXLM
Mix 9 GoogleNet, ResNet-50, NCF, Transformer XXLM

: memory—intensive / C: compute—intensive / X: mixed / L: lightweight

(a) Characteristics of the evaluated MLPerf DNNs

(b) Evaluated spatial-multitasking workloads
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Evaluation - STP, ANTT, and HW resource util.

« STP improves up to 31.9% over Planaria w/ PREMA
» Geometric mean improvement in ANTT achieves 13.0%
« PE & DRAM BW utilization improve up to 2.68x and
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Evaluation result of TPU-like DM-NPU



Evaluation - Performance Modeling

* Use a mean absolute error (MAE) as the accuracy metric
« MAE = %Z?;Olllatencyi — predicted;|

« DM-Perf achieves high accuracy over PREMA
» Single-DNN: 2.91%b vs 44.36%
 Low-performance: 2.3% vs 25.2%
« TPU-like: 1.4%b0 vs 41.1%
. ngh performance: 3.2%b vs 56.3% OPREMA __ MDM-Perf

100 100 - 100 - 100
50 - D H SO—H HHHH HHH SO—H HHHHHHHH 50H||||H||HH|HH
0 - 0 - 0 - 0 -

MAE [%]

S N S — NNt O™~ D — Nt Oor~0a D — NN TN O™~
&8 8 R EAEAEAEAED FEEREENT N
\% s » 22222222209 S22 2220 2222222222
NPU Config Workload < Workload < Workload <

U f\c (a) Single-DNN | Uni 3 B (b) Low-performance (c) TPU-like (d) High-performance 2



Evaluation - HW Implementation Costs

Component TPU DM-NPU Overhead

PE 0.1697 mm? 0.2024 mm? +0.0327 mm?2 (+19.27%)
SDS+WB 0.0543 mm? 0.0606 mm? +0.0063 mm?2 (+11.66%)
ACCQ 0.0320 mm? 0.0357 mm? +0.0037 mm?2 (+11.44%)

Others 0.3294 mm? 0.3294 mm? -
Total 0.5854 mm? 0.6280 mm? +0.0427 mm? (+7.29%)

| " TPU (b) DM-NPU
igh Perfi Post-PnR layouts of low-performance TPU and DM-NPU implementations 20
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Conclusion
- Difficult to fully utilize the systolic array

« The existing coarse-grained systolic array allocation limits the potential of spatial
multitasking on NPUS.

- Dataflow mirroring & DM-NPU

» Reverse the dataflows of co-located NNs
 Achieve highly flexible and efficient spatial multitasking

- DM-Perf: Accurate Contention-aware perf. model

 Capture the shared NPU HW resource contentions using per-layer profiles
 Achieve high accurate latency calculation

« Up to 31.9% performance improvement over SotA
« Optimal systolic-array allocation with fine-grained PE distribution
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